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ABSTRACT  
Artificial intelligence (AI) and machine learning (ML) promises transformative effects on coalition multi-
domain and hybrid operations. AI/ML approaches that support situational understanding in the context of 
ad-hoc coalition operations at the tactical edge are of considerable current research interest. Coalition 
operations need distributed AI/ML that is robust to contested and complex multi-actor situations. 
Information with a high degree of complexity needs to be collected across a range of sensed modalities and 
processed at high tempo, aligned with human needs and capabilities. Research carried out in the joint 
US/UK Distributed Analytics and Information Science (DAIS) programme since 2016 is addressing coalition 
needs for adaptable, trusted and resilient AI/ML: adaptable AI refers to AI systems which can rapidly adapt 
in dynamic situations; trusted AI means that human users are able to rapidly calibrate their trust in AI 
systems; and resilient AI concerns AI systems which are resilient to adversary attacks and deception.  

This paper focuses on DAIS research centred on the rapid exploitation and integration of coalition AI/ML 
assets including both symbolic (logic-based) and subsymbolic (deep neural network-based) approaches. To 
provide a focus for the paper, we consider settings involving detecting patterns of interrelated events that 
form situations of interest where only sparse training data (for ML) is available. Rapid trust calibration is 
addressed via a combination of explainable AI - involving both symbolic and subsymbolic approaches to 
explainability - and effective management of uncertainty - considering both aleatoric and epistemic types of 
uncertainty. While not the primary focus of this paper, resilience is considered by showing that the 
integrated neuro-symbolic system performs robustly against targeted model-poisoning adversarial attacks, 
and also that the processing of multimodal sensed data by explainable AI/ML services makes the integrated 
system much harder to attack. For easier assimilation of the programme of work, we use a single integrated 
case study of a coordinated attack in an urban setting based on the NATO Anglova exercise. 

1.0 INTRODUCTION 

Military operations typically involve working with coalition partners to resolve rapidly evolving situations 
where adversaries are adapting their tactics, techniques and procedures, and the behaviour of the civilian 
population is changing. Achieving coalition situational understanding (CSU) involves both insight, i.e., 
recognising existing situations, and foresight, i.e., learning and reasoning to draw inferences about those 
situations, exploiting assets from across a coalition, including sensor feeds of various modalities, and 
analytic services. Thus, military information processing systems need to be able to recognise significant 
patterns of activity which are distributed in time and space, in near real-time, without generating too many 
false alarms. In the language of information processing, this requires the ability to recognise the relationship 
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between a set of individual events. Recent years have seen significant advances in artificial intelligence (AI) 
and machine learning (ML) technologies applicable to CSU. Deep learning-based AI systems are constantly 
improving their ability to recognise such individual events. However, such state-of-the-art ML techniques 
based on deep neural networks require large volumes of training data; unfortunately, representative training 
examples of situations of interest in CSU are usually sparse. Moreover, to be useful, ML-based analytic 
services cannot be ‘black boxes’; they must be capable of explaining their outputs and quantifying their 
uncertainty in their decision-making to allow users to calibrate their trust in AI-based assets, often rapidly. 

We describe an integrated CSU approach that combines deep neural networks with symbolic learning and 
reasoning, as well as techniques for explainability and uncertainty-awareness, integrated within an 
environment that facilitates human-AI collaboration. The approach supports processing of multi-modal 
sensed data, and emphasises two key features: 

• Humans are able to inject new knowledge, or hypotheses, about patterns of activity rapidly through 
addition of new rules – which means patterns can be recognised in situations where there is 
insufficient time or data to train a deep learning model; 

• The need for training data is significantly-reduced (especially important when examples of the 
patterns-of-interest are relatively rare), AI model training is faster, and detection accuracy is 
improved over ‘pure’ deep learning approaches. 

Our approach is loosely-coupled, based on open source software in an open architecture, and the AI-based 
assets can run on edge-of-network devices, thus being suitable for tactical sensor systems. Our integrated 
approach is intended to result in AI-based CSU systems for Defence that are (1) adaptive, able to learn and 
adapt at the ‘pace of the fight’; (2) trusted, meaning that human users are able to rapidly calibrate their trust 
in the AI-based assets; and (3) resilient to adversary attacks and deception. The paper reports research 
carried out in the joint US/UK Distributed Analytics and Information Science (DAIS) programme since 
2016. For easier assimilation of the programme of work, we present the key scientific and technological 
components in the context of an integrated scenario: a coordinated attack in an urban setting. 

2.0 OVERVIEW OF THE SCENARIO & AI-BASED SERVICES 

We demonstrate the research in the context of monitoring a rapidly-evolving situation in the NATO Anglova 
urban setting [1] via diverse coalition AI assets processing multimodal sonsor data with management of 
situational uncertainty. We envision a situation where events indicate growing threats to, and attacks on, a 
section of the Anglova civilian population, the ‘Capulet’ community. We focus on four AI services, each 
chosen to showcase particular DAIS research technologies, summarised below and in Table 1: 

• Capulet Club CCTV: a CCTV processing service owned by Anglovan local law enforcement 
located outside a popular nightclub frequented by members of Anglova’s Capulet community 
detects an active shooter event via deep neural network (DNN) processing of audio-visual data 
running on an edge device. To build trust and assure robustness, the service is able to provide multi-
modal explanations for its outputs with associated uncertainty. 

• Media Monitor: a service owned by the US coalition partner and located in cyberspace detects 
threats of violence directed against the Capulet community via DNN natural language processing 
(NLP) of Twitter data. Again, the service can offer appropriate explanations and is equipped to 
provide uncertainty awareness. 

• Capulet Plaza Listener: an acoustic sensor-based service owned by the UK coalition partner and 
located in a busy public plaza in the Capulet part of town processes audio data streams via a neuro-
symbolic AI architecture. This service is able to detect events such as an IED explosion when 
trained on a relatively small set of training data. 
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• Situation Monitor: this service, owned by the UK coalition partner and located in cyberspace, 
performs probabilistic logic programming via the Evidential Logic Programming engine [2] with 
rules injected by subject matter experts to detect that the three preceding events (active shooter, 
threats of violence, IED explosion) constitute a situation of interest, i.e., escalating violence directed 
against the Capulet population of Anglova. 
 

Table 1: Overview of scenario AI services. 

 

3.0 THE COGNI-SKETCH HUMAN-AGENT SENSEMAKING ENVIRONMENT 

Our scenario features a situational understanding example based on the collaboration between human and 
machine agents in a sensemaking software environment. The purpose of this environment is a virtual 
workspace where human and machine agents can rapidly build and exchange knowledge through two key 
user interface affordances: tellability, injecting new knowledge and information (e.g., rules and facts), or 
explainability, going deeper into rationales of why information exists or has been added. Figure 1 shows an 
overview of the Cogni-Sketch environment [3]. The palette on the left-hand side provides a set of capabilities 
and services that can be used, customized or extended, and shared as needed for each use-case. For example, 
we have the standard core entity types, as well as specific additional extensions to support CSU: 

• Service (red ‘cog’ icon): the AI machine services that have been deployed into this environment, 
usually in a distributed setting onto the sensors themselves, but they could also be run remotely in 
cloud infrastructure. 

• Explanation (light blue question mark icon): additional information from the service which 
provides some form of explanation for any events that are detected. 

• Uncertainty (dark blue triangle icon): all observations and inferences come with uncertainty 
information which is essential in terms of any downstream inferences or human assessment. 

• Event (green icon customised for different event sub-types): the events that can be detected by 
services in this environment, these are specialized into a number of concrete types, based on the 
capabilities of the services, e.g.: explosion, violence, shooting and situations. 

The Cogni-Sketch canvas on the right of Figure 1 shows the services that were introduced in the previous 
section: the Capulet Club CCTV service, the Situation Monitor service, the Capulet Plaza Listener service 
and the Media Monitor service. Two of these (Capulet Club CCTV and Capulet Plaza Listener) are 
specifically located in Anglova City based on the sensors they are connected to, and the AI processing is 
located directly on these sensors, i.e., at the edge of the network. The other services are not located in 
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specific geo-locations but operate in cyberspace, with the AI processing running in appropriate locations 
within the coalition cloud. The figure shows the ‘end state’ of the sequence of events outlined in Table 1; this 
state will be built-up over the next three subsections. 

 

 

Figure 1: Cogni-Sketch human-agent sensemaking environment. 
 

Commonly, software environments to support sensemaking involve graphical interfaces that allow users to 
‘connect the dots’, affording flexibility in adding increasing context and meaning as the sensemaking process 
progresses, for example, following the Pirolli & Card model [4]. Commercial tools such as I21 and research 
prototypes such as CISpaces2 support the process with varying strengths and weaknesses. Generally, there is 
a tendency to either favour higher-level sensemaking (i.e., schematization and case-building, often via formal 
representations) or lower-level (i.e., pre-formalisation via ‘shoeboxing’ and exploratory assembly of 
evidence). Many analysts fall back on generic mind-mapping or concept-mapping tools for the latter because 
of their ease of use and lack of formality. However, none of these tools currently allow rapid integration of 
AI services and their necessary explanatory affordances. 

4.0 EXPLAINABLE MULTI-MODAL EVENT DETECTION 

Figure 2 shows the result on the Cogni-Sketch canvas of the Capulet Club CCTV service detecting an active 
shooter situation in front of a nightclub that is frequented by members of Anglova’s Capulet civilian 
population. The explanation for the event contains links to the relevant raw input from the sensor, which in 
this case is the CCTV video and audio feed (shown bottom-left in the figure, and in enlarged form on the 
right). This can be seen on the canvas as the SAVR (Selective Audio-Visual Relevance) explanation which 
takes the form of an attention-highlight video showing the audio and visual relevance of the scene.  

SAVR employs selective relevance [5], a postprocessing step that can be applied to an explanation such as 
the example produced by the layerwise relevance propagation (LRP) technique [6]. Here we review an 
                                                      

1 https://www.ibm.com/uk-en/security/intelligence-analysis/i2 
2 https://cispaces.org 
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example of the SAVR application of the method (i.e., selective relevance applied to both the audio and video 
streams of a multimodal model). The goal of the method is to decompose explanations for heterogeneous 
data into more interpretable components. For instance, for the video, a spatio-temporal input, selective 
relevance decomposes the explanation into its spatial and temporal counterparts. The temporal element is 
shown on the far right in Figure 2. This functionality, not present in the base LRP explanation, reveals to us 
specifically whether regions in the video are relevant because of their appearance or because of the motion 
taking place within them. Within the context of this example, selective relevance is seen to highlight the 
shooter’s arm (upper right quadrant of the fat top-right image in the figure). Similarly, temporal elements of 
the audio track are highlighted on the spectrogram in the lower right image.  

The chief benefit to coalition operations from SAVR is increased robustness of the human-AI system. This 
includes robustness against adversarial attacks involving input spoofing because the focus on temporal and 
multimodal features makes it significantly more challenging for an attacker to provide spoof data: spoof data 
needs not only to fool a classifier in each modality, but also to generate plausible modal and temporal/spatial 
distributions of relevance. 
 

         

Figure 2: Multi-modal event detection with SAVR explanation.  
 

The active shooter event has been assessed to be “Likely, some confidence”. This is a natural language 
representation of a subjective logic opinion [7], that distinguishes the amount of belief, disbelief, and 
epistemic uncertainty in the truth of a given proposition. Each event comes with a source uncertainty 
assessment that can be modified upon ingestion into the platform. The source uncertainty, here, has been 
discounted at 80% because the sensor and service are run by the local Anglovan authorities whereas the 
coalition user maintaining situation understanding is from the UK. This information is all available in the 
graph but is hidden by default to ensure that the users are not overwhelmed, but can navigate to any relevant 
information as needed. 

5.0 SITUATION MONITORING WITH KNOWLEDGE INJECTION 

The analyst has seen the shooting event and has formed a hypothesis of escalating violence against the 
Capulet civilian population. There is no time or data to re-train the Situation Monitor service to learn this 
hypothesis, but we can readily modify the rules used by the Evidential Logic Programming inference engine 
to inject the new hypothesis in near real-time (an instance of the Cogi-Sketch tellability affordance noted in 
Section 3). The analyst therefore would like to direct the Situation Monitor service to be particularly focused 
on any discussion on social media that may indicate increasing unrest, specifically by looking for early 
indications of violence towards Capulets. This is a technical update and would likely be made by an operator 
who has responsibility for maintaining the services, but the Cogni-Sketch environment can also support the 



Coalition Situational Understanding Via Adaptive, 
Trusted and Resilient Distributed Artificial Intelligence Analytics 

5 - 6 STO-MP-IST-190 

input of higher-level information from which code such as this can be generated. After reviewing the current 
configuration the user decides to extend the rules and link this into the configuration, as shown in Figure 3. 
This could either be done by extending the existing configuration rule, or by creating a new additional node 
as shown here. The rule is now live and has updated the running Situation Monitor service accordingly. 

 

 

Figure 3: Injection of a new situational rule to take  
account of threats of violence on social media. 

As time passes, the Media Monitor service, processing social media data on Twitter, signals a credible, 
“Likely, some confidence,” threat to Capulets, shown in the bottom right of Figure 4. This service employs a 
DNN model based on BERT embeddings [8] trained with the evidential deep learning (EDL) approach 
allowing the model to express epistemic uncertainty when facing unseen data [9]. At the neural layer, an 
EDL model is specially trained to characterize the amount of relevant evidence for the various alternatives in 
light of the input (sensor) data and the data used to train the AI network. In this case, the input is Twitter text 
messages and the training data consists of samples of threatening/angry messages previously obtained from 
Twitter and labelled as such by human subject matter experts. In many different applications, it has been 
demonstrated that EDL can detect out-of-distribution test samples.  Furthermore, accuracy increases when 
deferring decision-making on highly uncertain test data. The EDL framework can be applied to numerous 
target classification systems. It allows such systems to alert decision makers when it no longer is able to 
provide reliable recommendations, which is possibly due to changes in the operational environment relative 
to how the system was trained. This enables decision makers to rely on the system only when it is reliable. 

Returning to the scenario, the ‘triggering’ Twitter message processed by the Media Monitor service is shown 
at the bottom left of Figure 4, along with an attention-based explanation that highlights (in red) the parts of 
the tweet that caused it to be classified as threatening. The EDL uncertainty is shown here mapped into in 
natural language as “Likely, some confidence”. Due to the earlier rule change, the Situation Monitor service 
is in turn triggered by the detection of this new threats of violence event, creating a situation based on both 
the new event and the previous active shooter event, both of which are targeting the Capulet community (see 
the links between the three green event nodes in Figure 4). Initially the uncertainty is “Likely, with low 
confidence” with the rationale noting that this is computed from component events, which are indicated via 
the “related event” links from the active shooter and threats of violence events. The rules continue to run and 
the situation will be updated as any new related events are detected, with the certainty being revised 
accordingly. 
 



 Coalition Situational Understanding Via Adaptive, 
Trusted and Resilient Distributed Artificial Intelligence Analytics 

STO-MP-IST-190 5 - 7 

 

Figure 4: The unfolding situation with linked shooting and threats of violence events.  
 

6.0 NEURO-SYMBOLIC COMPLEX EVENT DETECTION 

Finally, an explosion event is detected by the Capulet Plaza Listener service. As with all detected events, a 
link to the explanation is shown along with the original audio should the analyst wish to assess the event for 
themselves – shown in Figure 5. This AI service is very confident, generating a “Very likely, certain” 
classification for this event, and since this listener service is run by the UK coalition partner there is no 
modification to this certainty. The new explosion event is also linked to the unfolding situation, due to the 
spatio-temporal proximity, and the certainty for the situation is updated accordingly. 

 
 

Figure 5: Explosion event detected by the DeepProbCEP Capulet Plaza Listener service. 
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We will now examine implementation details of the Capulet Plaza Listener service, shown in Figure 6. This 
service is implemented using DeepProbCEP, a hybrid neuro-symbolic architecture designed to perform 
complex event processing (CEP) [10]. DeepProbCEP combines a neural network and a logic (rules) layer 
which allows us to train the system using far less data than neural only approaches. The first step is to split 
the input audio into one second segments. Each of these segments is then passed through VGGish, a state-of-
the-art feature extractor [11]. VGGish outputs a feature vector which is then fed into a neural network, 
AudioNN in the figure. AudioNN will output a classification of which sounds are present in the given second 
of audio. Based on these classifications, the logic layer will detect the situations of interest defined in the 
rules. Compared to simple neural architectures [12] and state-of-the-art neuro-symbolic approaches to CEP 
[13], DeepProbCEP (i) needs less labelled training data thanks to its end-to-end learning capability, (ii) is 
robust against noise and adversarial attacks in the form of training data poisoning, and (iii) can classify 
individual events as a by-product of the end-to-end training. 

DeepProbCEP allows experts to manually define the conditions for a situation of interest similar to the rule 
injection example shown in Section 5. However, in this case we have used FastLAS [14] to learn the rules 
through inductive logic programming. This has allowed us to train DeepProbCEP in and end-to-end manner 
without the necessity of an expert to define the rules. In the centre of Figure 6 we can see some of the rules 
that have been written by FastLAS. Despite being automatically generated, these rules are still 
understandable by humans with a logic programming background. For instance, the first rule defines that a 
single IED attack will occur if an explosion sound is detected for at least 2 seconds without being interrupted 
by complete silence. This is the rule that detected the explosion for this demo. In order to train the system we 
first obtain the rules using FastLAS. This was done using a very small dataset with different situations of 
interest we wanted to detect. Then the whole system can be trained in an end-to-end manner. In order to do 
this, the training audio must be provided to the system which will then use the neural network and rules to 
predict if a situation of interest is occurring. This will then be compared to the ground truth and used to 
generate a gradient for back-propagation. Using DeepProblog [15] the logic layer is made differentiable 
which allows us to train the neural network to detect the sounds that appear in the audio. 

 

 

Figure 6: Overall architecture of DeepProbCEP for the audio setting used in the Capulet Plaza 
Listener service.  
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7.0 CONCLUSION 

In this paper we have shown how multiple pieces of research carried out in the US/UK Distributed Analytics 
and Information Science (DAIS) programme enable patterns of situational events to be recognized where 
there is insufficient time or data to train deep learning AI models. We highlighted two key capabilities: 

• Humans can inject new knowledge about patterns of activity through addition of new rules. 

• AI models can be trained more rapidly, with a much-reduced need for training data and improved 
detection accuracy compared to ‘pure’ deep learning approaches. 

The scenario highlights a loose coupling of hybrid types of AI systems in an open architecture, and how the 
resulting applications are able to run on edge-of-network devices, thus being suitable for use in tactical 
sensor systems. DeepProbCEP operates on commercial off-the-shelf hardware (a standard laptop) and SAVR 
has been tested on a Jetson Nano device, and is capable of generating audio-visual explanations in real-time. 
Moreover, we demonstrated AI services operating in multiple domains – physical and cyber – on a variety of 
data modalities, with awareness of situational uncertainty. The overall goal of our research is to offer a 
means to enable Defence to adopt AI systems able to learn and adapt at the ‘pace of the fight’, to ensure our 
allied coalition’s tempo of understanding and action is not overmatched by adversaries. 

ACKNOWLEDGEMENT 

This research was sponsored by the U.S. Army Research Laboratory and the UK Ministry of Defence under 
Agreement Number W911NF–16–3–0001. The views and conclusions contained in this document are those 
of the authors and should not be interpreted as representing the official policies, either expressed or implied, 
of the U.S. Army Research Laboratory, the U.S. Government, the UK Ministry of Defence or the UK 
Government. The U.S. and UK Governments are authorized to reproduce and distribute reprints for 
Government purposes notwithstanding any copy-right notation hereon. 

REFERENCES 

[1] N. Suri, K. M. Marcus, C. van den Broek, H. Bastiaansen, P. Lubkowski, and M. Hauge, “Extending 
the Anglova scenario for urban operations,” in International Conference on Military Communications 
and Information Systems, 2019. 

[2] F. Cerutti, L. Kaplan, A. Kimmig, and M. Sensoy, “Probabilistic Logic Programming with Beta-
Distributed Random Variables”, in 33rd AAAI Conference on Artificial Intelligence, 2019. 

[3] D. Braines, F. Cerutti, M. R. Vilamala, M. Srivastava, L. Kaplan, A. Preece, and G. Pearson, “Towards 
human-agent knowledge fusion (HAKF) in support of distributed coalition teams,” in AAAI FSS-20: 
Artificial Intelligence in Government and Public Sector, 2020. 

[4] P. Pirolli and S. Card, “The sensemaking process and leverage points for analyst technology as 
identified through cognitive task analysis,” in International Conference on Intelligence Analysis, 2005. 

[5] H. Taylor, L. Hiley, J. Furby, A. Preece, and D. Braines, “VADR: Discriminative multimodal 
explanations for situational understanding,” in 23rd International Conference on Information Fusion, 
2020. 

[6] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On pixel-wise 
explanations for non-linear classifier decisions by layer-wise relevance propagation,” PloS One 10, 
2015. 



Coalition Situational Understanding Via Adaptive, 
Trusted and Resilient Distributed Artificial Intelligence Analytics 

5 - 10 STO-MP-IST-190 

[7] A. Jøsang, A, Subjective Logic: A Formalism for Reasoning Under Uncertainty, Springer, 2016. 

[8] J. Devlin, M-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional 
transformers for language understanding”, NAACL-HLT, 2019. 

[9] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to quantify classification 
uncertainty,” in Advances in Neural Information Processing Systems, 2018. 

[10] M. R. Vilamala, H. Taylor, T. Xing, L. Garcia, M. Srivastava, L. Kaplan, A. Preece, A. Kimming, and 
F. Cerutti, “A hybrid neuro-symbolic approach for complex event processing in noisy and adversarial 
set- tings,” in 36th International Conference on Logic Programming, 2020. 

[11] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. 
A. Saurous, B. Seybold, et al., “CNN architectures for large-scale audio classification,” in IEEE 
International Conference on Acoustics, Speech and Signal Processing, 2017. 

[12] J. Roldán, J. Boubeta-Puig, J. Luis Martínez, and G. Ortiz, “Integrating complex event processing and 
machine learning: An intelligent architecture for detecting IoT security attacks,” Expert Systems with 
Applications 149, 2020. 

[13] T. Xing, L. Garcia, M. R. Vilamala, F. Cerutti, L. Kaplan, A. Preece, and M. Srivastava, “Neuroplex: 
Learning to detect complex events in sensor networks through knowledge injection,” in 18th 
Conference on Embedded Networked Sensor Systems, 2020. 

[14] M. Law, A. Russo, E. Bertino, K. Broda, and J. Lobo, “FastLAS: Scalable inductive logic 
programming incorporating domain-specific optimisation criteria,” in 34th AAAI Conference on 
Artificial Intelligence, 2020. 

[15] R R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. D. Raedt, “DeepProbLog: Neural 
probabilistic logic programming,” in Advances in Neural Information Processing Systems, 2018. 


